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Abstract

The surrogate model is an effective way to connect the simulation and optimization models in groundwater 
flow numerical modeling; it could overcome the limitations of embedding and calling simulation models 
in the optimization model by conventional methods, which greatly reduces the computational load caused 
by directly calling the simulation model in the solving process of the optimization model. In this paper, the 
dual-response surface method and radial basis function artificial neural network method were applied to 
establish the surrogate model of groundwater flow numerical simulation in Jinquan Industrial Park, Inner 
Mongolia, China. The Latin hypercube sampling method was used to determine random pumping load of 
the five pumping wells, which were taken as the input data groundwater flow numerical simulation model 
for calculating 10 observation wells drawdown data sets (output data sets). Based on the input and output 
data sets, the dual-response surface method and radial basis function artificial neural network method were 
used to establish the surrogate model of groundwater simulation model, and the validity of surrogate models 
were comparatively tested. The results showed that both the results of two surrogate models fit well with the 
results of the simulation model, which indicates that two surrogate models were capable of approaching the 
groundwater flow numerical simulation model; compared with the dual response surface model, the RBF 
neural network model had more advantages in terms of sample size requirements, fitting the accuracy of 
simulation results.
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Introduction

The efficient integration of the numerical simulation 
and optimization management models in groundwater 
management has been a great concern to water managers. 
The numerical simulation model focuses on solving the 
problem of forecasting, while the optimization management 
model focuses on solving problems of optimization of a 
decision-making program in groundwater management 
[1], while the notification and efficient integration of two 
mathematical models are important issues that need to be 
resolved in the management of water resources.

The current methods used to solve the efficient 
integration of optimization management model and 
numerical simulation model of groundwater management 
are mainly the embedding method, response matrix 
method, state equation method, and so on [2]. However, 
these methods have their own scope of application, and 
were often limited in practical use [3]. For example, the 
dimension of embedding the increasing model led to 
increasing the amount of calculation, for multi-period 
unsteady flow problems, it would result in the “curse 
of dimensionality”; state variables of response matrix 
method in the optimization model did not appear in the 
form of decision variables, it was only applied to model 
coupling of the linear system [4].

To address the limitations of conventional methods, 
we try to build an approximate surrogate model which 
is functionally close to the groundwater flow simulation 
model, and the surrogate model could be directly called 
in the process of the optimization model iterative solution 
(to solve the surrogate model) to overcome the limitations 
of embedding and calling simulation models in the 
optimization model by conventional methods, greatly 
reducing the calculation load by calling the simulation 
model in the calculation process of the optimal model 
[5]. The surrogate model theory had been widely used 
in petroleum, mechanical design, and other fields, but it 
has not been reported a lot in the groundwater resource 
management. The common surrogate model included the 
dual response surface model based on regression analysis, 
the artificial neural network model, and the support 
vector machine model and so on, where the dual response 
surface method and radial basis function neural network 
method were relatively well developed research methods 
[6-8]. Response surface methodology was first proposed 
by Box and Wilson in 1951 [9], and was applied in the 
chemical industry, food industry, and biology. Until the 
late of 20th century, Kim and Lin found that the variables 
in the traditional response surface method often generate 
errors in many cases [10]. Meanwhile, Vining and Myers 
proposed a “dual response surface method” to surrogate 
the traditional response surface method, and this method 
had been widely used and constantly improved in recent 
years [11-13].

Artificial neural network research was explored in 
the 1940s. In 1985 the radial basis function method of 
multivariate interpolation was proposed by Powell [14]. 
And in 1988 the radial basis function network was used 

in artificial neural network design for the first time by 
Broomhead and Moody and Darken. It was successfully 
applied to pattern recognition, which constituted a radial 
basis function (RBF) neural network [15]. RBF has 
the advantages of fast convergence and high precision 
approximation and small network size, which overcomes 
the problems of local minimum and slow convergence  
of the BP network [16-17]. It has attracted increasing 
attention of researchers in the field of pattern recognition, 
chemical information processing, and signal control theory 
and so on, and in recent years it has been widely used in 
the fields of meteorology, hydrology, and hydrogeology, 
etc.

This paper attempts to establish a surrogate model 
for a groundwater numerical simulation model with 
dual response surface method and radial basis function 
neural network. Jinquan Industrial Park water sources 
in Inner Mongolia, China, to discuss in detail the main 
process of an surrogate model with two methods, 
the comparison between two surrogate models was 
performed to demonstrate the reliability and advantages 
and disadvantages of two models, which may provide 
theoretical support for the integration of the groundwater 
optimization management model and groundwater 
numerical simulation model.

Methodology

Dual-Response Surface Methodology

The dual-response surface method is an objective 
optimization method that establishes two response 
surfaces to realize objective optimization, where one 
surface fits the mean of response, μ, and the other surface 
fits its standard deviation, σ2, which can ensure the 
solution minimizing the design objective volatility in the 
interference of controlled or uncontrolled factors, but also 
ensures that the target tended to be optimal [18-19].

In the study of the relationship of pumping and 
drawdown, the pumping dataset was first input into the 
groundwater simulation model to calculate the drawdown 
data set, and then two response surface-mean and standard 
deviations were established by polynomial regression 
equations with the “output data set,” where the response 
relationship between groundwater pumping intensity and 
drawdown was close to the groundwater flow numerical 
simulation model in function.

It is assumed that there were n pumping wells, m 
observation wells, and the number of pumping trials was 
N.

 – Establish regression equation of the observation wells 
drawdown mean. 
From the impact of the different pumping test 

program on the drawdown of groundwater, the statistical 
relationship between drawdown mean of observation well 
and pumping intensity of each pumping well could be 
analyzed. 
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The average drawdown of observation wells in a 
pumping test is expressed as:

                           (1)

…where yi was the drawdown value of the ith observation 
well and i = 1,2,3,L m was the total number of observation 
wells.

Set pumping load x1, x2, L, xn of each pumping well as 
an independent variables, and the drawdown mean of each 
observation well as the dependent variable, the polynomial 
regression equation could be established as:

  
(2)

…where β was the regression coefficient of the surface; 
εμ was the fitting error; j = 1,2,3,L n; and n was the total 
number of pumping wells.

According to the pumping test data of each group:

Regression equations could be established respectively, 
regression coefficient β could be determined by the least 
squares method, xn

(N) was the pumping intensity of the nth 
pumping wells in the Nth pumping test, and N was the total 
number of pumping tests.

Establishing the regression equation of residual 
standard deviation of drawdown of the observation wells: 
 – According to the relationship between drawdown 

residual standard deviation of observation wells 
and pumping intensity of each pumping well, 
the differential degree of each observation wells 
drawdown in a pumping test under certain pumping 
intensity distribution schemes could be expressed and 
measured.
Residual sum of squares Q of observation wells 

drawdown in a pumping test could be calculated with 
equation (3):

                             (3)

…where m is the total number of observation wells; y–     is the 
drawdown mean of all m observation wells in a pumping 
test; yi is drawdown value of the ith observation wells; 
i = 1,2,3,L m; and m is the total number of observation 
wells.

The residual standard deviation S of observation wells 
drawdown in a pumping test could be calculated as:

                           (4)

…where m is the total number of observation wells and n 
is the total number of pumping wells.

Set pumping intensity x1, x2, L, xn of each pumping 
well in the pumping test as independent variables, and the 
residual standard S of each observation well drawdown 
as the dependent variables, the polynomial regression 
equation could be established as:

 
(5)

…where γ was the regression coefficient of the surface; 
εσ was the fitting error; j = 1,2,3,L n; and n was the total 
number of pumping wells.

According to the pumping test data of each group:

Regression equations could be established respecti-
vely, γ could be obtained by the least squares method, 
N was the total number of pumping tests, and xn

(N) was 
the pumping intensity of the nth pumping wells in the Nth 
pumping test.

The statistical relationship between residual standard 
deviation of observation wells drawdown and pumping 
intensity was calculated, and for each pumping test the 
residual standard deviation of observation wells drawdown 
could be calculated. Then this indicator could be used 
to describe and measure the inconsistency (difference) 
degree of each observation well drawdown.

By establishing two response surfaces, polynomial  
on the pumping intensity and mean of groundwater 
drawdown and the residual standard deviation could be 
listed. About solving polynomial regression coefficients, 
in general, the polynomial regression was transformed 
into multiple linear regressions, so the fitting error could 
be zero, that is, for any polynomial comprised of many 
variables:

 

We could assume to make z1 = x1, z2 = x2, z3 = x3, 
z4 = x1x2, z5 = x2

2,…, the above formula could be transformed 
into a multiple linear regression problem, then the above 
equation could be:
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Polynomial regression coefficients b1, b2, L, bn and 
constants term b0 could be obtained by least squares 
method.

Radial Basis Function Artificial 
Neural Network

The radial basis function (RBF) neural network 
used herein was a feed-forward neural network of local 
approximation; its topological structure is shown in Fig. 1 
and Fig. 2 [20]. The mapping from the input layer to the 
radial base was nonlinear, and from the radial base layer 
to the output layer implementation was a linear mapping 
[21].

Choosing a suitable radial basis function was the key 
to achieving the network. Radial basis function was a local 
distribution, central radially symmetric, non-negative 
attenuation non-linear function; its two parameters (base 
center and the base width) would decide the range, which 
produced a significant response to input. Gaussian function 
has many advantages as the basis function, such as simple 
forms of expression, and would not increase too much 
complexity even for multi-variable input, radial symmetry, 
good smoothness, and presented any order derivatives and 
so on [22]. Therefore, it was often taken as a radical basis 
function RBF network, which was expressed as:

              (6)

…where Ri(x) is the output of the ith nodes in hidden layer, 
i = 1,2,3,L m; and σi is the variance of the ith nodes in 
hidden layer, which determined the width of ranging to 
center point of the base functions.

The product of the vector distance and deviation 
between the weight vector wj of each neuron j (j = 1,2,3,L 
L, R) in radial base layer and the pth input vector xp is 
taken as input value in radial basis function to enter the 
expression:

  

 
(7)

Thus the output of radial base neuron j was:

  (8)

Results and Discussion

Overview of Study Area

The selected study area lies between latitude  
105-110° North and longitude 39°69′-40°30′ East  
(Fig. 3), the Piedmont alluvial plain area, the aquifer 
type was unconsolidated rock pore water, and its aquifer 
thickness was 42.72-68.01 m. The aquifer lithology was 
mainly grayish breccia, gravel sand gray-blue, gray-
yellow sand, local clay, and clay containing interlayer, 
and the thickness was in uneven distribution and was not 
continuous distribution. Buried in shallow groundwater, 
its quantity was abundant and quality was good. The 
groundwater of Piedmont alluvial plains was mainly from 
runoff recharge of mountain groundwater, surface water of 
mountain (mainly in the flood), and seepage recharge from 
atmospheric precipitation. The groundwater flowed from 

Fig. 1. Topological structure of RBF neural network.

Fig. 2. RBF neural network hidden layer neurons of the input 
and output. 

Fig. 3. The study area.
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the Piedmont to alluvial plain runoff, at the same time, 
impacted by a large number of groundwater exploitation, 
the study area is recharged from lateral runoff of 
groundwater on both sides of the plain area.

Groundwater Flow Numerical 
Simulation Model

The simulation calculation area in this research was 
mainly in the Piedmont alluvial plain area. The target 
layer of simulation calculation was Quaternary Holocene 
- Pleistocene unconfined aquifer. The upper boundary of 
the simulation region was diving free surface, through 
which the diving water exchange water vertically with 
the out system; the lower part was the Pleistocene silty 
clay layer with extremely poor permeability, generalized 
as aquiclude; the inner zone to the border was generalized 
as flux boundary.

The mathematical model could be described by 
following partial differential equations and its definite 
condition [23]:

     

                  (9)

…where H is groundwater head (m), H0(x,y) is 

Fig. 4. Flow-fitting chart of the test period at the end of time.

groundwater initial head (m), Zb is aquifer floor 
elevation (m), k is aquifer permeability coefficient 
(m/d), μ is aquifer-specific yield (dimensionless), W is 
aquifer vertical recharge intensity (including rainfall, 
flood, and irrigation water leakage recharge) (m/d),  
E is groundwater evaporation excretion intensity (m/d), 
P is aquifer mining intensity (m/d), G2 is known flow 
boundary, q(x,y,t)  is aquifer lateral displacement per 
unit width (m3/d – positive when inflow, negation when 
outflow, 0 when impermeable boundary), n is outward 
normal direction on the boundary, and D is range of 
calculation area.

The simulation period in the research was identified as 
7 September 2008 to 18 March 2009. The Groundwater 
flow field of 7 September was taken as the initial flow field 
of identification period, and the groundwater flow field of 
18 March was taken as the final flow field of identification 
period, with a total of 183 days. The results of the model 
test (Fig. 4) declared that the groundwater simulation 
model could objectively reflect the motion characteristics 
of groundwater flow. 

Surrogate Model

Data Sources and Processing

Five pumping wells were selected in the key  
simulation calculation area of the research area using  
the Latin hypercube sampling method to the extent 
practicable, and the representative pumping load was 
selected as an input data set and the 30 group different 
pumping tests program was developed, which provided 
data preparation for establishing a surrogate model of  
the groundwater flow numerical simulation model.

The pumping load data sampling results by Latin 
hypercube sampling methods for the selected five  
pumping wells are shown in Table 1 and Fig. 5 [24-25].
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Dual Response Surface model

1. Establishing regression equation of the observation 
wells drawdown mean 
According to the theory of the dual-response surface 

method, the regression equation of the observation wells 
drawdown mean was established by existing data: 

5 6 5 5
1 2 3 4

6 9 2 8 2 9 2 8 2
5 1 2 3 4

9 2 8 9
5 1 2 1 3

0.472678207 1.5311 10 9.28894 10 +1.08451 10 +9.97093 10

4.84779 10 3.06998 10 1.35851 10 3.54148 10 1.3116 10

5.33059 10 1.47388 10 3.98616 10

y x x x x
x x x x x
x x x x x

- - - -

- - - - -

- - -

= + ´ - ´ ´ ´ +
´ - ´ - ´ + ´ - ´ +
´ + ´ - ´ 5 8

1 4 1 5
8 8 8 8 9

2 3 2 4 2 5 3 4 3 5
5

4 5

2.89901 10 1.58054 10

1.01887 10 +3.0194 10 1.05236 10 +3.75841 10 1.87759 10

2.30902 10

x x x x
x x x x x x x x x x
x x

- -

- - - - -

-

- ´ + ´ +
´ ´ - ´ ´ - ´ -
´

Then each group pumping test program data was 
substituted into the regression equation to obtain the 
regression values of drawdown mean under different 
programs, as shown in Table 2.

Table 2 shows that the regression values of groundwater 
drawdown mean under the 1, 2, 3, and 4 pumping test 
programs were relatively small. The establishment of 
observation well drawdown means regression equation 
could know the impact of different pumping test programs 
on groundwater drawdown. If the regression values of 
groundwater drawdown mean were relatively small, the 
pumping of groundwater would have little effect on the 
water level.

2. Establishing the regression equation of residual 
standard deviation on the observation wells drawdown

 

Table 1. LHS sample results.

Well 
Number Q1 Q2 Q3 Q4 Q5

1 45 30 304 165 625

2 150 130 1,089 19 400

3 100 195 119 110 985

4 430 260 28 213 23

5 370 300 1,219 390 1,100

6 265 393 492 278 108

7 525 461 1,437 336 1254

8 385 530 185 441 170

9 600 595 1,219 1,106 1,432

10 735 657 365 500 215

11 1,335 726 981 997 1,319

12 800 790 1,674 554 278

13 665 842 1,325 629 1,608

14 1,407 918 743 1,288 336

15 866 990 1,561 1,505 1,384

16 1,069 1,055 230 599 456

17 800 1,120 1,620 1,546 1,537

18 938 1,188 425 1,210 1,653

19 1,742 1,255 1,507 720 518

20 1,000 1,319 552 1,455 1,198

21 1,809 1,386 620 778 579

22 1,135 1,452 1,365 1,391 1,496

23 1,900 1,500 1,277 884 684

24 1,671 1,569 1,035 835 729

25 1,268 1,649 928 946 1,132

26 1,742 1,715 679 1,669 806

27 2,000 1,778 1,175 1,037 1,021

28 1,532 1,846 800 1,153 869

29 1,875 1,905 1,158 1,325 934

30 1,600 1,979 865 1,615 916

Fig. 5. The distribution of exploitation and observation wells at 
the simulation areas.

Table 2. The mean water level drawdown of different pumping 
schemes.

Scheme
Mean value of 

groundwater level 
(m)

Scheme
Mean value of 

groundwater level 
(m)

1 0.496968 16 0.536002

2 0.491058 17 0.619618

3 0.490845 18 0.572725

4 0.498168 19 0.584738

5 0.537995 20 0.590627

6 0.51251 21 0.566305

7 0.543607 22 0.610618

8 0.51537 23 0.590645

9 0.580342 24 0.579652

10 0.528012 25 0.5785

11 0.577758 26 0.616283

12 0.566497 27 0.59905

13 0.56024 28 0.590392

14 0.589012 29 0.613212

15 0.615923 30 0.618205
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Another response surface: the regression equation 
of residual standard deviation on the observation wells 
drawdown was established by using input and output data 
for the residual standard deviation of observation wells 
drawdown that was obtained by using equations (3) and 
(4):

7 5 6 5
1 2 3 4

6 9 2 8 2 9 2 9 2
5 1 2 3 4

9 2 8 9
5 1 2 1

0.433750445 2.96329 10 2.75595 10 +5.71047 10 +3.32465 10

8.36091 10 4.74304 10 2.42234 10 6.49954 10 4.03544 10

9.81431 10 2.61134 10 7.50606 10

S x x x x
x x x x x
x x x x

- - - -

- - - - -

- - -

= + ´ - ´ ´ ´ +
´ - ´ - ´ + ´ - ´ +
´ + ´ - ´ 8 8

3 1 4 1 5
8 8 8 9 9

2 3 2 4 2 5 3 4 3 5
8

4 5

5.36625 10 2.84232 10

1.9281 10 +5.26149 10 1.97629 10 +2.81508 10 3.20401 10

4.08703 10

x x x x x
x x x x x x x x x x

x x

- -

- - - - -

-

- ´ + ´ +
´ ´ - ´ ´ - ´ -
´

Then each group pumping test program data was 
substituted into the regression equation to obtain the 
regression values of drawdown residual standard deviation 
under different programs, as shown in Table 3.

Through the establishment of the regression equation 
of residual standard deviation on the observation wells 
drawdown, in selected pumping test programs, the 
drawdown residual standard deviation could be used as an 
indicator to describe and measure the degree of difference 
of each observation well groundwater drawdown.

Thus far, two response surface regression equations 
were obtained, meaning that the establishment of dual 
response surface model was completed.

To verify whether the dual response surface model 
could surrogate the groundwater flow numerical model, 
any five different pumping test programs in the pumping 
load allowable range of selected five pumping wells were 
developed as the verification data. Then the authentication 
data were input into groundwater flow numerical 
simulation model and dual response surface model to 

calculate the mean and the residual standard deviation of 
observation wells drawdown, the model results are shown 
in Table 4.

The average relative error of water level drawdown 
mean by dual response surface model and the fitting results 
by simulation model was 0.056; the average relative error 
of drawdown residual standard deviation and fitting results 
by the simulation model was 0.045.

The fitting errors of both water level drawdown 
mean and residual standard deviation by dual response 
surface model and the results of groundwater numerical 
simulation model were small, indicating that dual response 
surface approximated the simulation model in function, 
which could effectively surrogate the groundwater flow 
numerical simulation model.

RBF Neural Network model

In order to simulate the effect of simultaneous 
extraction of five pumping wells on groundwater 
drawdown, the RBF neural network model was used to 
build a nonlinear relationship model between pumping 
intensity and observation wells drawdown. Thirty 
different sets of pumping test program by Latin hypercube 
sampling were used as training samples and the verified 
data in Table 5 were used as the test samples, which meant 
1 to 30 groups were selected as training samples; 31 to 35 
groups were selected as test samples.

With the input (pumping) and output (drawdown) 
datasets, two RBF neural network models were esta-
blished: pumping well pumping load-observation wells 
drawdown mean and pumping well pumping load-
observation wells drawdown residual standard deviation. 
Matlab 6.5 is taken as a platform to call the function newrb 
() to create an RBF neural network model, and the calling 
format is [26-27]:

Table 3. Drawdown residual standard deviation of the return 
value under different pumping test programs.

Scheme Value Scheme Value

1 0.445394 16 0.422995

2 0.450187 17 0.450238

3 0.445217 18 0.414549

4 0.432405 19 0.45171

5 0.462338 20 0.418785

6 0.439356 21 0.422094

7 0.470694 22 0.439964

8 0.435627 23 0.440896

9 0.445685 24 0.434966

10 0.434011 25 0.42757

11 0.433921 26 0.411204

12 0.470098 27 0.433976

13 0.460647 28 0.421552

14 0.422883 29 0.429834

15 0.447714 30 0.423135

Table 4. Results of the mean and the residual standard deviation 
of running groundwater numerical simulation model and dual 
response surface model (m).

Scheme

Groundwater 
numerical 
simulation 

model

Dual 
response 
surface 
model 

Average 
relative 

error

Mean value 
of water 

level

0.512664 0.574099

0.056

0.593256 0.627166

0.512534 0.499825

0.532882 0.566621

0.563761 0.55627

Water level 
drawdown 

residual 
standard 
deviation

0.46123 0.440306

0.045

0.53165 0.495028

0.39012 0.412614

0.40175 0.418193

0.42518 0.432202
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Table 5. RBF neural network training data samples and test samples.

Sample 
number

Pumping capacity (m3/d) Mean value of water 
level drawdown (m)

Residual standard deviation of 
water level in observation wells (m) Remarks

Q1 Q2 Q3 Q4 Q5 y– S

1 45 30 304 165 625 0.496968 0.447849

Training 
sample

2 150 130 1,089 19 400 0.491058 0.443612

3 100 195 119 110 985 0.490845 0.443836

4 430 260 28 213 23 0.498168 0.434339

5 370 300 1,219 390 1,100 0.537995 0.465451

6 265 393 492 278 108 0.51251 0.447243

7 525 461 1,437 336 1,254 0.543607 0.473492

8 385 530 185 441 170 0.51537 0.430239

9 600 595 1,219 1,106 1,432 0.580342 0.44418

10 735 657 365 500 215 0.528012 0.431454

11 1,335 726 981 997 1,319 0.577758 0.433291

12 800 790 1674 554 278 0.566497 0.470527

13 665 842 1,325 629 1,608 0.56024 0.457654

14 1,407 918 743 1,288 336 0.589012 0.421565

15 866 990 1,561 1,505 1,384 0.615923 0.448406

16 1,069 1,055 230 599 456 0.536002 0.421353

17 800 1,120 1,620 1,546 1,537 0.619618 0.450367

18 938 1,188 425 1,210 1,653 0.572725 0.415609

19 1742 1255 1507 720 518 0.584738 0.453291

20 1,000 1,319 552 1,455 1,198 0.590627 0.417635

21 1,809 1,386 620 778 579 0.566305 0.423437

22 1,135 1,452 1,365 1,391 1,496 0.610618 0.439895

23 1,900 1,500 1,277 884 684 0.590645 0.440086

24 1,671 1,569 1035 835 729 0.579652 0.435076

25 1,268 1,670 928 946 1,132 0.5785 0.43143

26 1,742 1,715 679 1,669 806 0.616283 0.415575

27 2,000 1,778 1,175 1,037 1,021 0.59905 0.432311

28 1,532 1,846 800 1,153 869 0.590392 0.421759

29 1,875 1,905 1,158 1,325 934 0.613212 0.427985

30 1,600 1,979 865 1,615 916 0.618205 0.420699

31 720 356 983 1,067 562 0.512664 0.46123

Test sample

32 348 1,385 862 1,468 289 0.593256 0.53165

33 185 942 257 359 827 0.512534 0.39012

34 529 487 246 1,322 1,479 0.532882 0.40175

35 765 654 234 925 1,632 0.563761 0.42518



1843Application of Dual-Response Surface...

net = newrb ( P , T , goal , spread , mn , df )

…where P is the input vector; T was the target vector; goal 
is the mean square error with the default of 0; spread is the 
distribution density of radial basis functions – the greater 
of the spread value, the smoother the function (the default 
value of spread was 1); mn is the maximum number of 
neurons; and df is the added number of neurons between 
two displays.

Then simulation training of the network was taken 
to verify identification and prediction performance. The 
calling format is:

y = sim ( net, X_test)

… where X_test was the testing sample of the model.
First we established the RBF neural network model 

on pumping wells pumping load-observation wells 
drawdown mean. The input layer represented the pumping 
wells pumping load, the number of neurons was consistent 
with the number of pumping wells, as the number of 5; 
output layer represented the observation wells drawdown 
mean, and the number of neurons was set as 1. Setting 
each parameter value in newrb () function: goal = 0.001, 
spread = 50,000, mn = 20, df = 1.

By programming in matlab codes, the operating results 
obtained by RBF neural network model were as follows: 

y–    = 0.5628    0.5926    0.5184    0.5581    0.5446
err = 0.0501   -0.0007    0.0059    0.0253   -0.0191

Then we established the RBF neural network model 
of pumping well pumping load-observation wells 
drawdown residual standard deviation. The input layer 
still represented pumping wells pumping load, the number 
of neurons was consistent with the number of pumping 
wells, as the number of 5; output layer represented the 
observation wells drawdown residual standard deviation, 
and the number of neurons was set as 1. Setting each 

parameter values in newrb () function: goal = 0.000001, 
spread = 3,273, mn = 50, df = 1.

By matlab programming, the operating results obtained 
by RBF neural network model were:

S = 0.4481    0.4904    0.4217    0.4074    0.4198
err = -0.0131   -0.0412    0.0316    0.0057   -0.0053

We found that the average relative error of water 
level drawdown mean obtained by RBF neural network  
model and the calculated results by simulation model was 
0.038; the average relative error of drawdown residual 
standard deviation and the simulation model results was 
0.042. 

Comparative Analysis of Results

Both the dual response surface model and RBF neural 
network model could approximate groundwater flow 
numerical simulation model in function. A comparative 
analysis of the two models are performed to see which 
model is more robust, and it was found that the approximate 
surrogate model is more suitable for the groundwater flow 
numerical simulation model.

In the use of the same test data to verify the validity 
of the surrogate models, it was found that the accuracy 
of two surrogate models existed some difference, and the 
average relative error of water level drawdown means 
by dual response surface model and the fitting results by 
simulation model was 0.056; the average relative error of 
drawdown residual standard deviation and fitting results 
by the simulation model was 0.045, while the average 
relative error of water level drawdown mean obtained by 
RBF neural network model and the calculated results by 
simulation model was 0.038; the average relative error of 
drawdown residual standard deviation and the simulation 
model results was 0.042. We calculated that the fitting 
error of drawdown mean obtained by dual response surface 
model was 32% higher than the fitting error of drawdown 
mean obtained by RBF neural network model, the fitting 

Fig. 6. Fitting of surrogate model and simulation model.
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error of drawdown the residual standard deviation 
obtained by dual response surface model was 6% higher 
than the fitting error of drawdown the residual standard 
deviation obtained by RBF neural network model. This 
showed that the results accuracy of RBF neural network 
model was slightly higher than the dual response surface 
model, which was more approximate to the groundwater 
flow numerical simulation model. Fitting of the surrogate 
model and simulation model is shown in Fig. 6. 

Therefore, compared with the dual response surface 
model, the calculation process of the RBF neural network 
model was simple and easy for operation, with a low 
requirement for sample number and the fitting error of 
running results with calculated results obtained by the 
simulation model was small, more direct expression, 
and more suitable as approximate surrogate model of 
groundwater flow numerical simulation model.

Conclusions 

In this paper we used Latin hypercube sampling to 
obtain the input (pumping load) and output (drawdown) 
data sets in groundwater flow numerical simulation, and 
these data sets were applied to establish dual response 
surface and RBF neural network models as surrogate 
models of groundwater flow numerical simulation. In 
the same validation data, the results of two surrogate 
models and the calculated results of the simulation model 
fit well, and both of the two surrogate models could 
approximate groundwater flow numerical simulation 
model in function. By comparative analysis of calculated 
results of two surrogate models that we focused on in this 
paper, we found that the RBF neural network model was 
more competitive in terms of sample size requirement, 
and results fitting accuracy of the simulation model, etc., 
which was more conducive to practical use.

The surrogate model of groundwater simulation 
model established in this paper overcame the limitations 
of conventional coupling methods, it could be directly 
called in the solving process of the iteration optimization 
model, and could greatly reduce computational load 
caused by direct calling of the simulation model in the 
solving process of the iteration optimization model. The 
surrogate model method provides important theoretical 
and practical significance for solving nesting and fusion 
of the groundwater optimization management model, 
and numerical simulation models a series of problems. 
Besides, it had potential and space on development and 
management research work of groundwater resources.
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